Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea?
نویسنده
چکیده
The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation.
منابع مشابه
Assessing the Accuracy of a Linearized Observation Operator for Assimilation of Radio Occultation Data: Case Simulations with a High-Resolution Weather Model
Assimilation into numerical weather models of the refractivity, Abel-retrieved from radio occultations, as the local refractivity at ray tangent point may result in large errors in the presence of strong horizontal gradients (atmospheric fronts, strong convection). To reduce these errors, other authors suggested modeling the Abel-retrieved refractivity as a nonlocal linear function of the 3D re...
متن کاملA new regional climate model operating at the meso-gamma scale: performance over Europe
There are well-known difficulties to run numerical weather prediction (NWP) and climate models at resolutions traditionally referred to as ‘grey-zone’ ( 3 8 km) where deep convection is neither completely resolved by the model dynamics nor completely subgrid. In this study, we describe the performance of an operational NWP model, HARMONIE, in a climate setting (HCLIM), run at two different reso...
متن کاملCosmic Gps Radio Occultation: Neural Networks for Tropospheric Profiling over the Intertropical Ocean Area
Global Positioning System (GPS) radio-occultation (RO) is provided as a global sounding technique for obtaining atmospheric profiles by integrating them in global models for numerical weather prediction and for climate change studies. The radio occultation system employs GPS receivers placed on a Low-Earth Orbit (LEO) satellite to sound the Earth’s troposphere and ionosphere evaluating the addi...
متن کاملA synoptic-climatology approach to increase the skill of numerical weather predictions over Iran
Simplifications used in regional climate models decrease the accuracy of the regional climate models. To overcome this deficiency, usually a statistical technique of MOS is used to improve the skill of gridded outputs of the Numerical Weather Prediction (NWP) models. In this paper, an experimental synoptic-climatology based method has been used to calibrate, and decrease amount of errors in GFS...
متن کاملThe DYMECS project: A statistical approach for the evaluation of convective storms in high-resolution NWP models
A new frontier in weather forecasting is emerging by operational forecast models now being run at convection-permitting resolutions at many national weather services. However, this is not a panacea; significant systematic errors remain in the character of convective storms and rainfall distributions. The DYMECS project (Dynamical and Microphysical Evolution of Convective Storms) is taking a fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 372 2018 شماره
صفحات -
تاریخ انتشار 2014